(Nieuwe pagina aangemaakt met 'local p = {} local map = { I = 1, V = 5, X = 10, L = 50, C = 100, D = 500, M = 1000, } local numbers = { 1, 5, 10, 50, 100, 500, 1000...')
 
Regel 12: Regel 12:
 
local chars = { "I", "V", "X", "L", "C", "D", "M" }
 
local chars = { "I", "V", "X", "L", "C", "D", "M" }
  
function p.ToRomanNumerals(frame)
+
function p.toRomanNumerals(frame)
 
     --s = tostring(s)
 
     --s = tostring(s)
     s = tonumber(frame)
+
    local sourceNumber = mw.text.unstrip(frame.args[1])
     if not s or s ~= s then error"Unable to convert to number" end
+
     s = tonumber(sourceNumber)
     if s == math.huge then error"Unable to convert infinity" end
+
     if not s or s ~= s then error "Unable to convert to number" end
 +
     if s == math.huge then error "Unable to convert infinity" end
 
     s = math.floor(s)
 
     s = math.floor(s)
 
     if s <= 0 then return s end
 
     if s <= 0 then return s end
Regel 39: Regel 40:
 
end
 
end
  
function p.ToNumber(frame)
+
function p.toNumber(frame)
 +
local sourceNumber = mw.text.unstrip(frame.args[1])
 +
    s = tonumber(sourceNumber)
 
     s = frame:upper()
 
     s = frame:upper()
 
     local ret = 0
 
     local ret = 0
Regel 47: Regel 50:
 
         local c = s:sub(i, i)
 
         local c = s:sub(i, i)
 
         if c ~= " " then -- allow spaces
 
         if c ~= " " then -- allow spaces
             local m = map[c] or error("Unknown Roman Numeral '" .. c .. "'")
+
             local m = map[c] or error( "Unknown Roman Numeral '" .. c .. "'" )
 
              
 
              
 
             local next = s:sub(i + 1, i + 1)
 
             local next = s:sub(i + 1, i + 1)

Versie van 9 aug 2023 19:38

Module:ConvertNumerals

Summary
35 -> Scriptfout: de functie "toRomanNum" bestaat niet.


XXXV -> Scriptfout: de functie "toArabicNum" bestaat niet.

Need to check for validity of Roman numeral first, or provide a default in event of error

Scriptfout: de functie "toArabicNum" bestaat niet.



local p = {}
local map = {
    I = 1,
    V = 5,
    X = 10,
    L = 50,
    C = 100, 
    D = 500, 
    M = 1000,
}
local numbers = { 1, 5, 10, 50, 100, 500, 1000 }
local chars = { "I", "V", "X", "L", "C", "D", "M" }

function p.toRomanNumerals(frame)
    --s = tostring(s)
    local sourceNumber = mw.text.unstrip(frame.args[1])
    s = tonumber(sourceNumber)
    if not s or s ~= s then error "Unable to convert to number" end
    if s == math.huge then error "Unable to convert infinity" end
    s = math.floor(s)
    if s <= 0 then return s end
	local ret = ""
        for i = #numbers, 1, -1 do
        local num = numbers[i]
        while s - num >= 0 and s > 0 do
            ret = ret .. chars[i]
            s = s - num
        end
        --for j = i - 1, 1, -1 do
        for j = 1, i - 1 do
            local n2 = numbers[j]
            if s - (num - n2) >= 0 and s < num and s > 0 and num - n2 ~= n2 then
                ret = ret .. chars[j] .. chars[i]
                s = s - (num - n2)
                break
            end
        end
    end
    return ret
end

function p.toNumber(frame)
	local sourceNumber = mw.text.unstrip(frame.args[1])
    s = tonumber(sourceNumber)
    s = frame:upper()
    local ret = 0
    local i = 1
    while i <= s:len() do
    --for i = 1, s:len() do
        local c = s:sub(i, i)
        if c ~= " " then -- allow spaces
            local m = map[c] or error( "Unknown Roman Numeral '" .. c .. "'" )
            
            local next = s:sub(i + 1, i + 1)
            local nextm = map[next]
            
            if next and nextm then
                if nextm > m then 
                -- if string[i] < string[i + 1] then result += string[i + 1] - string[i]
                -- This is used instead of programming in IV = 4, IX = 9, etc, because it is
                -- more flexible and possibly more efficient
                    ret = ret + (nextm - m)
                    i = i + 1
                else
                    ret = ret + m
                end
            else
                ret = ret + m
            end
        end
        i = i + 1
    end
    return ret
end

return p